
www.manaraa.com

Design and Analysis of a Fault-Tolerant

Web Retrieval Algorithm

Moreno Marzolla

Dipartimento di Informatica

Università Ca’ Foscari di Venezia

via Torino 155, 30172 Mestre (VE), Italy

e-mail: marzolla@dsi.unive.it

Abstract

In this paper we describe an algorithm which allows users to access documents over

replicated World Wide Web Servers in a fault-tolerant way. The algorithm breaks the

request for a Web document W , which is assumed to be replicated among N different

servers, into N requests such that any K replies are sufficient to reconstruct the whole

page. In this way, the algorithm downloads the document from the K fastest servers. The

impact of the value of K on the performances of the retrieval algorithm is evaluated using

a simple analytical model for the network connections between the client machine and the

servers. Results show that, under the model’s assumptions, a correctly tuned value for K

can improve significantly the probability of completing earlier the transfer of W .

Keywords Web Architectures, Reliability Analysis, Fault-Tolerant Systems, Analytic

Modeling.

1 Introduction

Accessing large documents over the World Wide Web can be problematic due to the un-

stable nature of the network. Web Servers (WSs) may become overloaded, unresponsive

and occasionally crash. The network itself is subject to transient congestions, and indi-

vidual links may break down. However, many Web documents are hosted on multiple

WS replicas. Multiple replicas ensure scalability, and recently [6, 7] it has been shown

1

mailto:marzolla@dsi.unive.it


www.manaraa.com

that they may be used to improve the responsiveness when accessing Web documents.

Multiple geographically-distributed replicas guarantee a certain level of fault-tolerance,

since each WS usually fails independently from the others.

Suppose we want to access a document W residing on N different Web Servers

S0, S1, . . . , SN−1, where each server has an identical copy of W . If the servers are ge-

ographically distributed, then choosing the “best” server for fetching the page is a non-

trivial problem. Not all the replicas could be up and running at the same time, and not

all the replicas could provide the same bandwidth and/or the same latency. Moreover,

the variable nature of the network may alter the parameters of each client-server con-

nection, slowing down previously fast connections or speeding up congested ones. In this

situation different approaches can be followed. The whole page W can be requested to all

the replicas at the same time; the fastest server is automatically chosen, in that it will be

the first one to provide the page. Assuming that the client machine does not constitute

a bottleneck, this solution has the obvious disadvantage of wasting network bandwidth,

as all the servers are sending the whole page W , even if only the copy provided by the

fastest server will actually be used. An alternative approach would be that of subdividing

the page W in N equally sized, non overlapping fragments W0,W1, . . .WN−1. The size of

each fragment is |W |/N . For each i, 0 ≤ i ≤ N − 1, fragment Wi is requested to server

Si. When all servers complete their request, it is possible to assemble the whole page

from the fragments. This approach does not waste bandwidth since the total number of

bytes sent over the network is exactly equal to the size of page W . Unfortunately, this

algorithm is sensible to network congestions and servers availability, since it requires all

the replies to reconstruct the whole page. In this situation, the time needed to fetch the

page is dominated by the slowest WS replica, and the situation tends to get worse as the

number N of replicas increases, as it will be more likely that at least one replica slows

down its transfer for any reason.

In this paper a new strategy for accessing documents over multiple WS replicas is

shown. This methodology is based on a simple variant of the information dispersal tech-

nique described in [14], and works as follows. Different subsets R0, R1, . . . RN−1 of the

original page W are requested to the N WS replicas in such a way that any K replies

(where K is a user-defined parameter, 1 ≤ K ≤ N) are sufficient to reconstruct the

page. The size of each request will be shown to be |W |N (N − K + 1). Setting K = 1

means requesting the whole page to all replicas, while setting K = N is equivalent to

distributing the requests among all N replicas in such a way that all of them must reply

before it is possible to reconstruct the page. Tuning the parameter K allows the client

2



www.manaraa.com

to automatically select the K fastest replicas, at the price of requesting bigger subsets of

the document W as K decreases.

In order to evaluate the algorithm’s performances, we compute the impact of the choice

of parameter K on the probability of completing a transfer in time less than t. To do

so, we consider a simplified Markov model of network connection based on the concept

of packet trains proposed in [9] with additional assumptions explained in section 4. The

computation of the probability of completion in time less than t is evaluated by computing

the Operational Time Distribution for the Markov model, using the algorithm described

in [15]. Analytic modeling allows us to obtain an early performance characterization of

the algorithm. In particular, we observe that a correct choice of K can dramatically

improve the probability of completing the transfer prior to a given deadline. We observe

also a strong dependence of the performances from the value of K, which means that an

incorrect choice for K can impact negatively the time needed to transfer the document.

This paper is organized as follows. In Section 3 the algorithm will be defined. Section 4

contains a mathematical analysis of the performances of the algorithm, under a simplified

model for the behavior of network connections. The model is used to derive the probability

of completing the transfer of a Web document W within a deadline t. The model is then

evaluated numerically, and the results will be presented in Section 5.

2 Previous work

There exists a vast literature on techniques for ensuring high availability and respon-

siveness of Web services [2, 3, 4, 6, 7]. The first techniques considered were based on

constructing a Web service out of replicated servers, which are locally distributed in a

cluster of workstations, and distributing client’s requests among those servers. In [7] it

is shown that these techniques are somehow limited in that they may be vulnerable to

failures of the gateway interfacing the cluster with the external network, and they do not

take into account issues such as client latency time over the network.

In [4] the authors discuss strategies for providing World Wide Web users with ade-

quate Quality of Service; to do so, they propose a strategy implementing load distribution

among WS replicated across the Internet (rather than in a cluster of workstations). Re-

sponsiveness is guaranteed by binding the user to the “most convenient” replica, which

they identify as the one providing the shortest user response time.

In [6] a mechanism for constructing responsive Web services is developed and im-

plemented. The mechanism is called “Client-Centered Load Distribution” (C2LD). Re-

3



www.manaraa.com

sponsiveness is achieved by intercepting each client’s browser request for a Web page, and

fragmenting the request into a number of sub-requests for separate parts of the document.

Each sub-request is concurrently issued to a different available WS replica. The replies

received from the replicas are assembled at the client end, and the page is reconstructed

and delivered to the client’s browser. C2LD is capable of dynamically reacting to changes

in the network and the WS replicas; to do so, a monitor mechanism periodically checks all

replicas and determines for each one the optimal fragment size so that the whole transfer

can be completed within a user-defined deadline. This monitoring mechanism guarantees

that replicas which are temporarily unavailable, or providing poor performances, are rec-

ognized and placed in a separate “stand-by” list and not used until they become responsive

again.

However, when the number of WS replicas is high, there is a growing probability that

at least one of them becomes suddenly congested or unresponsive. Thus, engaging a

data transfer with each available replica, requiring all transfers to complete in order to

be able to reconstruct the whole page, can be inefficient and lead to poor performances.

Timeouts can be used to reduce this problem, but their tuning is nontrivial. Long timeouts

imply that the algorithm adapts slowly, while short timeouts could lead to unnecessary

retransmissions.

Here are mainly concerned with the issue of providing a Web document W to the

user while tolerating a certain degree of network or server failures. Rather than assuming

that all servers will eventually reply, and treating server/network failures as unexpected

events, our approach assumes that a subset of the available WS replicas could provide

poor performances or become completely stuck. To overcome these problems, the request

for the Web document W is divided in a number of partially overlapping sub-requests,

so that any K out of N of them must complete before the page can be reconstructed,

where N is the number of the available WS replicas. The parameter K, 1 ≤ K ≤ N is

chosen by the user. This mechanism is in fact equivalent to selecting the K fastest WSs

to download the page, even when the notion of “fastest WS” changes over the time and is

thus impossible to know a priori. We don’t make use of any timeout mechanism, yet the

proposed algorithm, once K is defined, is completely adaptive in that it tolerates up to

N −K failures (or N −K poorly-performing connections). However, to achieve this the

algorithm introduces some redundancy in the requests sent to the WS replicas, and the

amount of redundancy depends on K as will be described in detail in the next section.

The analysis presented in Section 4 is aimed at identifying the impact of the choice

of the parameter K under a simplified analytical model of network connection. Different

4



www.manaraa.com

Algorithm 1 Computation of the requests R0, R1, . . . RN−1

Require: K, 1 ≤ K ≤ N

Ensure: Ri is the request for server Si, 0 ≤ i ≤ N − 1

1: fragSize := |W |/N

2: t := 0

3: R0 := R1 := . . . := RN−1 := ∅

4: for i = 0 to N − 1 do

5: Wi := W [i× fragSize, (i+ 1)× fragSize− 1]

6: for j = 1 to N −K + 1 do

7: Rt := Rt ∪Wi

8: t := (t+ 1) mod N

9: end for

10: end for

scenarios are illustrated in Section 5.

3 The Algorithm

A Web document W is a sequence of |W | bytes, (b0, b1, b2, . . . b|W |−1). The document is

assumed to be located at N different WSs, S0, S1, . . . SN−1. A chunk of W starting from

position i and ending at position j, 0 ≤ i ≤ j ≤ |W | − 1, is denoted as W [i, j] and is

defined as

W [i, j] = (bi, bi+1, bi+2, . . . bj−1, bj)

A request R made to a WS consists of any number of chunks of W ; overlapping portions

of different chunks only appear once in a request. The size of a request R is the total

number of bytes it contains. In the following we will use the term “request” to indicate

both those generated by the client, containing basically the list of starting and ending

positions for the chunks, and the reply generated by a server.

We want to define a set of N requests, R0, R1, . . . RN−1 for a given document W such

that Ri will be sent to server Si, with the following properties:

1. Any K replies are sufficient to reconstruct the whole document, for a fixed K, 1 ≤

K ≤ N ;

2. All the requests have the same size.

5



www.manaraa.com

The requests Ri, 0 ≤ i ≤ N − 1 can be computed using Algorithm 1. The algorithm

divides the page W in N non overlapping chunks W0,W1, . . .WN−1, of size |W |/N each.

Each chunk is then cyclically inserted into N −K + 1 different requests using the loop of

lines 6–9. It can be easily seen that this guarantees property (1) above: any chunk Wj

will not appear in N − (N −K + 1) = K − 1 requests, so any K of them can be chosen

with the guarantee that at least one will contain a copy of every chunk. To guarantee

property (2), the chunks are evenly distributed among all the requests.

Since each chunk of size |W |/N is present in N −K + 1 different requests, and there

are N chunks, the total size of all the requests is

N−1∑
i=0

|Ri| = N × |W |
N

(N −K + 1) = |W |(N −K + 1) (1)

The size of each request Ri being

|Ri| =
|W |
N

(N −K + 1) (2)

Fig. 1 illustrates an example of how requests are computed by Algorithm 1. The

algorithm assigns each chunk to N −K + 1 different requests in turn, starting from R0

through RN−1, wrapping back to R0 and starting again. The j-th copy of chunk Wi,

0 ≤ i ≤ N − 1, 0 ≤ j ≤ N −K, is assigned to request Rt, where

t = i× (N −K + 1) + j mod N (3)

All the N−K+1 instances of the N chunks, are evenly distributed among the N requests

in such a way that each request is made of exactly N −K+ 1 chunks, and all the requests

have thus the same size.

Algorithm 2 can now be used to retrieve the requests from all the available servers

S0, S1, . . . SN−1. It can be easily implemented by using a feature of version 1.1 of the Hyper

Text Transfer Protocol (HTTP/1.1) [17], namely the support for Byte-Ranges transfers.

HTTP/1.1 compliant WSs accept a Range header which can be used to specify which

byte ranges of the specified document are requested. The server encodes the requested

fragments into the reply body, and returns a status code 206 (“Partial Range”) to the

client.

As in C2LD [6], the program first interrogates the DNS (Domain Name Server) to

get the list of IP addresses associated with the domain name of the requested document.

After that, it contacts all the replicas using a HTTP HEAD request. This request is used

to check

• the size of the Web page;

6



www.manaraa.com

W(0,9)
W(10,19)
W(20,29)
W(30,39)
W(40,49)
W(50,59)
W(60,69)

R0 R1 R2 R3 R4 R5 R6

(a) N = 7,K = 3

W(0,9)
W(10,19)
W(20,29)
W(30,39)
W(40,49)
W(50,59)
W(60,69)

R0 R1 R2 R3 R4 R5 R6

(b) N = 7,K = 5

Figure 1: Example of requests generated by Algorithm 1 applied to a page W of size 70,

replicated among N = 7 Web Servers. On the left we set K = 3; on the right we set K = 5.

Request Ri to server Si is made of the chunks corresponding to the shaded boxes on the i-th

column of the grid, 0 ≤ i ≤ N − 1.

• whether the requested Web page has been relocated (in such case the new location

is contacted);

• whether the replica is down or unresponsive (in such case the replica is not used at

all by the algorithm).

Given the number N of working replicas, the size |W | of the Web page, and the user-

supplied parameter K, the requests for the WSs are computed using Algorithm 1. At

this point, the client opens N asynchronous HTTP connections, one with each WS, and

starts receiving the data. As soon as K replies have been completed, all the connections

are closed and the page W is reconstructed.

4 Model of Web Server connections

In this section an analysis of Algorithm 2 is presented. The analysis is performed using

a simple analytical model of the behavior of client-server connections based on a Markov

Reward Model. The analysis is aimed at calculating the Cumulative Distribution Function

for the random variable TN,K(W ), which denotes the time needed to complete the transfer

of a Web document W in time at most t, given N WS replicas and K sufficient replies to

reconstruct W .

We suppose that data transfers between a server and the client happen in bursts, that

7



www.manaraa.com

Algorithm 2 Fault-tolerant retrieval of a Web page
Require: S0, S1, . . . SN−1 replicas

Require: 1 ≤ K ≤ N minimum replies required to reconstruct the page

Require: W Web document to retrieve

1: Compute R0, R1, . . . RN−1 using algorithm 1

2: C := 0 Number of Requests completed

3: A := {S0, S1, . . . SN−1} Servers still active

4: for i = 0 to N − 1 do

5: Asynchronously start request Ri on Si

6: end for

7: while C < K do

8: Block waiting any Sj ∈ A to send part of its request Rj

9: if Request Rj of Sj completed then

10: A := A− Sj Remove server Sj from active servers

11: C := C + 1 Increment counter of completed requests

12: W := W ∪Rj Update the reconstructed page W

13: end if

14: end while

is, each transfer is made of active periods, during which bytes are transferred at a given

(fixed) rate Bw , alternating with idle periods, where no data transfer takes place. This

model is derived from the packet train model described in [9]. In the original packet train

model, the network traffic consists of a number of packet streams between various pairs of

nodes on the network. Each stream is made by a number of trains, and a train is a sequence

of packets. The gap between trains is large with respect to the gap between packets in

a train. We simplify the model as follows: we assume that the gaps between trains and

train lengths are independent and exponentially distributed random variables. Moreover,

we neglect the internal structure of each train, considering a train as a continuous stream

of bytes arriving at a constant rate Bw . With these assumptions, the model reduces to a

Markov-Modulated process with two states, corresponding to active and idle periods [8].

The bursty behavior of network traffic is well known [10, 13]. Here we make the

additional assumption that the duration of active and idle periods are independent and

exponentially distributed random variables. The exponentiality hypothesis is quite strong,

8



www.manaraa.com

0 1

λ

1− λ
µ

1− µ

Figure 2: Birth-death MC modeling the active/idle behavior of a network connection.

and it has been shown not to hold in the case of packet interarrivals during Telnet con-

nections, and in the case of FTPDATA chunks interarrival times during FTP connections

[13]. However, our aim is not to develop a realistic model of network connection; we

want only to represent its bursty behavior, since this is one of the most important factors

impacting the performances of Web retrieval algorithms.

Under these assumptions, the behavior of the connection between a WS and the client

can be modeled using the continuous-time birth-death Markov Chain (MC) depicted in

Fig. 2. The underlying continuous-time Markov model X = {X(t), t ≥ 0} is defined

over the discrete state space {0, 1}. When the system is in state 1, then the connection

is active. When the system is in state 0, the connection is idle. The model of a single

connection is characterized by three nonnegative parameters:

λ Transition rate from state 0 (Idle) to state 1 (Active)

µ Transition rate from state 1 to state 0

Bw Transfer rate of the connection when in state Active

We assume that the N network connections between the servers and the client are

independent, so the connection between replica Sj and the client is characterized by its

own parameters (λj , µj ,Bw j), 0 ≤ j ≤ N − 1, which may be different from those of

other connections. Moreover, we suppose that each WS replica has been running enough

to reach a steady-state condition when the client’s request arrives. This means that,

at time t = 0, the system is in equilibrium. In order to compute Pr {TN,K(W ) ≤ t},

the probability of downloading the document W in time at most t from N servers using

Algorithm 2 with parameter K, we have:

Pr {TN,K(W ) ≤ t} =
N∑
i=K

Pr {i servers replied by time t}

=
N∑
i=K

∑
Π⊆{0,1,...,N−1}

|Π|=i

Pr

{
Only WSs {Sj}j∈Π com-

pleted by time t

}

The probability that a WS completes its transfer before a given deadline t can be computed

as follows. We denote with Q the infinitesimal generator matrix for the MC of Fig. 2,

9



www.manaraa.com

which is defined as:

Q = [Qij ] =

 −λ λ

µ −µ

 (4)

The initial condition π = (π0, π1) is set to the steady-state probability vector for the MC

, and is [1]:

π0 =
µ

λ+ µ
π1 =

λ

λ+ µ
(5)

W The Web document to fetch

N Number of WS replicas

K Minimum number of replies necessary to reconstruct the page W ,

1 ≤ K ≤ N

λ Transition rate from state Idle to state Active

µ Transition rate from state Active to state Idle

Bw Bandwidth available when a connection is in state Active

TN,K(W ) Time needed to transfer the page W from at least K out of N WS

replicas.

π0, π1 Probability that, at the steady state, the Markov process of Fig. 2

is in state 0 and 1 respectively.

O(t) Operational time during the interval (0, t); it is the time spent by

the Markov process of Fig. 2 in state 1 during the interval (0, t).

Q Transition Matrix for the Markov process of Fig. 2.

q Uniformization rate, which verifies q ≥ maxij |Qij |

P Uniformized transition matrix.

Table 1: Symbols used in the paper

We consider the Markov process {X(t), t ≥ 0} over the finite time interval (0, t), t ≥ 0.

We compute the Cumulative Distribution Function for the time a network connection

remained in state Active. This is exactly the cumulative operational time as defined

in [12, 15]. Denoting with O(t) the total time spent in state 1 by the MC of Fig. 2, over

10



www.manaraa.com

the time interval (0, t):

O(t) =
∫ t

0

I(s)ds (6)

where

I(s) =

1 if X(s) = 1

0 otherwise
(7)

This defines a Markov Reward Model : I(s) represents the reward rate associated with the

states of the MC . O(t) is the total reward accumulated over the time interval (0, t).

A closed formula for the distribution Pr {O(t) ≤ s}, 0 ≤ s < t, has been derived in

[5] through uniformization. Efficient algorithms to evaluate the distribution are described

in [11, 12, 15, 16]. In particular, we use one of the algorithms (called “Algorithm I”)

proposed in [15] to compute the distribution of O(t). We recall briefly how that algorithm

works.

Let P = [Pij ] denote the uniformized probability matrix for the infinitesimal generator

matrix Q. Let q be the uniformization rate, which verifies q ≥ maxij |Qij |. P is related

to Q by

P = I +
Q

q
(8)

I being the identity matrix.

In [15] it is shown that the following equation holds, for s < t:

Pr {O(t) ≤ s} =
+∞∑
n=0

e−qt
(qt)n

n!

n∑
k=0

(
n

k

)(s
t

)k (
1− s

t

)n−k
W (n, k) (9)

where W (n, k) is the probability that the uniformized Markov process visits at most

k Active states during the first n transitions. W (n, k) can be evaluated recursively in

the following way. Let W0(n, k) and W1(n, k) be the probabilities that the uniformized

Markov process visits at most k Active states during the first n transitions, given that

the initial state is 0 and 1 respectively. We have that

W (n, k) = π0W0(n, k) + π1W1(n, k)

(remember that π0 and π1 are the initial probabilities associated with states 0 and 1

respectively, and were defined in Eq. (5)).

11



www.manaraa.com

0

1

0

1

P00

P11

P01

P10

W0(n, k) W0(n− 1, k)

W1(n− 1, k)

(a)

0

1

0

1

P00

P11

P01

P10

W1(n, k) W1(n− 1,
k − 1)

W0(n− 1,
k − 1)

(b)

Figure 3: Computation of the function W0(n, k) 3(a) and W1(n, k) 3(b)

W0(·, ·) and W1(·, ·) are defined as:

W0(n, k) =

P01W1(n− 1, k) + P00W0(n− 1, k) if n > 0

1 otherwise
(10)

W1(n, k) =



P11W1(n− 1, k − 1)+

P10W0(n− 1, k − 1) if n > 0 and k > 0

0 if n = 0 and k = 0

1 if n = 0 and k = 1

(11)

(see Fig. 3). Also we have that W0(n, n+ 1) = W1(n, n+ 1) = 1, for each n ≥ 0.

From the computational point of view, it is necessary to truncate the infinite sum in

Eq. (9):

Pr {O(t) ≤ s} = e(N) + e′(N,C) +

+
C∑
k=0

N∑
n=k

e−qt
(qt)n

n!

(
n

k

)(s
t

)n−k (
1− s

t

)k
W (n, n− k)

In [15] it is proved that e(N) and e′(N,C) can be bounded as follows:

e(N) ≤ 1−
N∑
n=0

e−qt
(qt)n

n!
(12)

e′(N,C) ≤ W (N,N − C)

(
1−

C∑
k=0

e−q(t−s)
(q(t− s))k

k!

)
(13)

Given a tolerance error ε specified by the user, the first truncation on N can be computed

12



www.manaraa.com

from Eq. (12) as

N = min

n ∈ N

∣∣∣∣∣∣
n∑
j=0

e−qt
(qt)j

j!
≥ 1− ε

2

 (14)

Once N is known, the second truncation value C can be computed using Eq. (13) as:

C = min

{
c ≤ N

∣∣∣∣∣ W (N,N − C)

(
1−

c∑
k=0

e−q(t−s)
(q(t− s))k

k!

)
≤ ε

2

}
(15)

The probability that Sj , 0 ≤ j ≤ N − 1, completes the transfer of its request Rj in

time at most t, can be expressed as Pr {Oj(t) ≥ Dj(W )}, where Dj(W ) is the cumulative

operational time needed to transfer the reply from server Sj to the client, and is:

Dj(W ) =
|W |
Bw j

× (N −K + 1)
N

The probability Pr {Oj(t) ≥ Dj(W )} can be evaluated using Eq. (9), replacing λ, µ,Bw

with λj , µj ,Bw j respectively. Oj(t) is the cumulative operational time of the connection

between server Sj and the client over the time interval (0, t).

Pr {TN,K(W ) ≤ t} can now be written as:

Pr {TN,K(W ) ≤ t} =
N∑
i=K

∑
Π⊆{0,1,...,N−1}

|Π|=i

N−1∏
j=0

(
Pr {Oj(t) ≥ Dj(W )} Ij∈Π + Pr {Oj(t) < Dj(W )} Ij /∈Π

)

where IP is the indicator function for predicate P .

5 Numerical Results

In this section we compute the probability Pr {TN,K(W ) ≤ t} in different scenarios, as

a function of t and for various values of K. The aim is to check the effectiveness of

Algorithm 2 for different choices of K.

The parameters are the number of WS replicas N , the triple (λj , µj ,Bw j), 0 ≤ j ≤

N − 1 characterizing the network connection between server Sj and the client, and the

size |W | of the Web document to fetch. We will consider two main scenarios, one were

a document of size |W | = 2 × 106B is fetched from N = 5 replicas, and the other where

the document size is |W | = 107B and the number of replicas is N = 10. We define

two more factors characterizing the various scenarios. They are named Network Speed

and Connection quality. The network speed is simply the value for the bandwidths Bw j ,

while connection quality refers to the values for λj , µj . The settings are summarized in

the following table:

13



www.manaraa.com

Name Types Values

Network speed Fast Bw = 105B/s

Slow Bw = 2× 104B/s

Connection quality Good λ = 1/0.25s, µ = 1/0.5s

Poor λ = 1/0.5s, µ = 1/0.5s

Very Poor λ = 1/1s, µ = 1/0.5s

Seven different scenarios, identified with the numbers 1–7, will be analyzed. Scenarios

1–4 are characterized by N = 5 and |W | = 2 × 106B. Scenarios 5–7 have N = 10 and

|W | = 107B. The remaining factors are set as shown in Tables 2 and 3.

Scenario N. of WS Network Speed Connection quality

1 5 Fast Good

2 4 Fast Good

1 Slow Poor

3 2 Fast Good

3 Slow Poor

4 2 Fast Poor

2 Slow Good

1 Slow Very Poor

Table 2: Scenarios 1–4, (N = 5, |W | = 2× 106B)

The column N. of WSs refers to the number of WSs having the factors set as in the last

two columns. For example, in scenario 4 we have N = 5 replicas, two of which have a fast

network speed but a poor connection quality, two have a slow speed and good connection

quality, and the other one has a slow speed and a very poor connection quality.

In Figures 4 and 5 we plot Pr {TN,K(W ) ≤ t} as a function of t, for different values of

K. In general, the best value ofK is the one maximizing the probability Pr {TN,K(W ) ≤ t}

for a given t.

The results for scenarios 1–4 are shown in Fig. 4. We observe that if all the network

connections have the same parameters, as in Fig. 4(a), then the better performances of

14



www.manaraa.com

Scenario N. of WSs Network Speed Connection quality

5 10 Fast Good

6 3 Fast Good

7 Slow Very Poor

7 1 Fast Good

4 Fast Poor

5 Slow Very Poor

Table 3: Scenarios 5–7 (N = 10, |W | = 107B)

Algorithm 2 are obtained by choosing K = N ; this is because the size of each request

for K = N is |W |/N , which is the minimum among all possible choices of K. Since

in scenario 1 we are assuming that all connections are equivalent, the better strategy is

obviously the one minimizing the number of bytes transferred over each connection.

Things change if we suppose that one connection has worst performances than the

others, as in Fig. 4(b). We observe that choosing K = N in this case yields the worst

performances, the the best alternative in this case being choosing the four fastest WS

replicas. This is because if K = N the performances are dominated by the slowest

connection, which in this case vanishes the advantage of having smaller requests.

Figures 4(c) and 4(d) depict the behavior of the algorithm in the presence of hetero-

geneous network connections. Both figures show that the best performances are obtained

by setting K = 2, that is, selecting the 2 fastest replicas (it’s not by chance that in sce-

narios 3 and 4 we have exactly 2 fast network connections). Note however that the second

best alternative is K = 1 (asking the whole document W to all WS replicas), and this

approach is better than choosing K = 3, . . . , 5 even if it imposes the greatest overhead

on the sizes of the fragments requested to the servers. In Fig. 4(d) we note that the

curves corresponding to K = 5 and K = 4 cross each other. In this case, deciding which

alternative should be considered better than the other depends on the value of t.

The results for scenarios 5–7 are shown in Fig. 5. Again, when all the network con-

nections have the same parameters as in Fig. 5(a) then the best approach is to download

the document W from all the WSs, setting K = N . In Fig. 5(b) we can see that the best

performances are obtained by setting K = 3, that is, downloading the page from the 3

15



www.manaraa.com

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

P
r{
T
N
,K

( W
)
≤
t}

t (seconds)

K = 1
K = 2

K = 3
K = 4

K = 5

(a) Scenario 1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

P
r{
T
N
,K

( W
)
≤
t}

t (seconds)

K = 1
K = 2

K = 3
K = 4

K = 5

(b) Scenario 2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
r {
T
N
,K

(W
)
≤
t}

t (seconds)

K = 1
K = 2

K = 3
K = 4

K = 5

(c) Scenario 3

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
r{
T
N
,K

( W
)
≤
t}

t (seconds)

K = 1
K = 2

K = 3
K = 4

K = 5

(d) Scenario 4

Figure 4: Results for scenarios 1–4 (N = 5, |W | = 2× 106B)

fastest WSs. For K = 3, the size of the request made to each WS replica is (see Eq. (2)):

|W |
N
× (N −K + 1) = 0.8× |W |

This is eight times 0.1 × |W |, which is the request size if K = 10. However, since in

Scenario 6 there are seven network connections which are considerably slower than the

three fast ones, setting K = 10 yields worst performances with respect to K = 3, 2, 1,

as the faster connections can transfer bigger requests faster than slow connections can

transfer smaller ones.

In Fig. 5(b) we note that the curves corresponding to K = 4 up to K = 9 are not

drawn. This is because the corresponding value of Pr {TN,K(W ) ≤ t} is very near to zero

16



www.manaraa.com

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

P
r{
T
N
,K

( W
)
≤
t}

t (seconds)

K = 1
K = 2

K = 3
K = 4

K = 5
K = 6

K = 7
K = 8

K = 9
K = 10

(a) Scenario 5

0

0.2

0.4

0.6

0.8

1

100 120 140 160 180 200

P
r {
T
N
,K

(W
)
≤
t}

t (seconds)

K = 1
K = 2

K = 3
K = 10

(b) Scenario 6

0

0.2

0.4

0.6

0.8

1

100 120 140 160 180 200

P
r{
T
N
,K

( W
)
≤
t}

t (seconds)

K = 1
K = 2

K = 3
K = 4

K = 5
K = 10

(c) Scenario 7

Figure 5: Results for scenarios 5–7 (N = 10, |W | = 107B). In 5(b) and 5(c), all omitted

curves were zero in the plotted interval.

in the plot’s range. This means that, for example, K = 10 is preferred to K = 4, . . . , 9 in

this case.

The situation illustrated by Fig. 5(c) is more complicated. We can see that the alter-

native yielding the best performances is in this case K = 5, followed by K = 4, K = 1

and K = 3. It is particularly interesting to note that setting K = 1 improves the prob-

ability of getting earlier the page W with respect to setting K = 3. Once again, this is

caused by the difference of performances of the fastest network connection with respect

to the others. Setting K = 3 causes smaller requests than K = 1, but at the price of

17



www.manaraa.com

requiring three replies from three different hosts to build the page, and the performances

are dominated by those of the slowest network connections.

6 Conclusions and future work

In this paper we presented an algorithm for fault-tolerant retrieval of a Web document W

replicated among N different WS replicas S0, S1, . . . SN−1. The algorithm computes N

different requests R0, R1, . . . RN−1 according to a user-defined parameter K, each request

being a subset of the original document W . All the requests have the same size, and

request Rj is sent to server Sj , 0 ≤ j ≤ N − 1. The set {Rj}0≤j≤N−1 has the property

that any K elements are sufficient to reconstruct W . Thus the algorithm is able to

download the page from the K fastest WS replicas, without probing their speed.

The algorithm is evaluated analytically by using a simple model of network connec-

tion. Each connection is assumed to be, at any time, in one of two states: active and idle.

During active periods, data is transferred at a constant rate, specific for each connection,

while during idle periods no data transfer occurs. The lengths of active and idle periods

are independent and exponentially distributed random variables. The model is evaluated

numerically using the algorithm proposed in [15] to obtain Pr {TN,K(W ) ≤ t}, the proba-

bility of completing the transfer of page W from at least K out of N WS replicas, in time

at most t. The model showed that the proposed algorithm can be effective in reducing the

expected time to complete the transfer of a document W , which is quite remarkable since

the algorithm does not employ any mechanism to poll the hosts to verify their respon-

siveness, nor it checks the network connections to assess their performances. The critical

problem is deciding the value for K. Choosing a too conservative (that is, low) value can

result in bad performances as larger sub-pages are requested to the WSs. Choosing a too

optimistic value results in smaller requests, but this requires a greater number of replies

to reconstruct the page, which raises the probability that at least one network connection

performs badly during the transfer period, limiting the overall performances.

Some automatic ways to compute in advance the parameter K are clearly desirable,

and are the subject of ongoing research. Moreover, we are working on a more realistic

model of WSs and network connections, which would allow early evaluations of variants

of Algorithm 2 or other similar Web retrieval algorithms. A C++ program implementing

Algorithm 2 is being developed, and will be used to assess the performances on the real

Internet. Such test program could be very useful to compare the performances of the

algorithm proposed in this paper with respect to C2LD mechanism described in [6].

18



www.manaraa.com

References

[1] Bolch, G., Greiner, S., Trivedi, K. S., and de Meer, H. Queueing Networks

and Markov Chains: Modeling and Performance Evaluation With Computer Science

Applications. Wiley-Interscience, 1998.

[2] Bunt, R. B., Eager, D. L., Oster, G. M., and Williamson, C. L. Achieving

load balance and effective caching in clustered web servers. In Proc. 4th International

Web Caching Workshop (San Diego, CA, Mar. 1999).

[3] Colajanni, M., Yu, P. S., and Dias, D. M. Analysis of task assignment poli-

cies in scalable distributed web server systems. IEEE Transactions on Parallel and

Distributed Systems 9, 6 (June 1998), 585–600.

[4] Conti, M., Gregori, E., and Panzieri, F. QoS-based architectures for geogra-

phycally replicated web servers. Cluster Computing 4, 2 (Apr. 2001), 109–120.

[5] de Souza e Silva, E., and Gail, H. R. Calculating cumulative operational time

distribution of repairable computer systems. IEEE Transactions on Computers 1, 35

(Apr. 1986), 322–332.

[6] Ghini, V., Panzieri, F., and Roccetti, M. Client-centered load distribution: A

mechanism for constructing responsive web services. In Proc. of 34th IEEE Hawaii

International Conference on System Sciences (HICSS’34) (Maui, Hawaii, Jan. 2001),

IEEE Computer Press.

[7] Ingham, D., Panzieri, F., and Shrivastava, S. K. Constructing dependable

web services. IEEE Internet Computing 4, 1 (January/February 1999), 25–33.

[8] Jagerman, D., Melamed, B., and Willinger, W. Stochastic modeling of traffic

processes. In Frontiers in Queuing: Models, Methods and Problems, J. Dshalalow,

Ed. CRC Press, 1996.

[9] Jain, R., and Routhier, S. Packet trains – measurements and a new model for

computer network traffic. IEEE Journal on Selected Areas in Communications 4, 6

(Sept. 1986), 986–995.

[10] Leland, W., Taqqu, M., Willinger, W., and Wilson, D. On the self-similar

nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Network-

ing 2, 1 (Feb. 1994), 1–15.

[11] Nabli, H., and Sericola, B. Performability analysis of fault-tolerant computer

systems. Technical Report 2254, Unité de Recherche Inria Rennes, IRISA, Campus

Unitersitaire de Beaulieu, 35042 RENNES Cedex (France), May 1994.

19



www.manaraa.com

[12] Nabli, H., and Sericola, B. Performability analysis: A new algorithm. IEEE

Transactions on Computers 45, 4 (Apr. 1996).

[13] Paxson, V., and Floyd, S. Wide-area traffic: The failure of Poisson modelling.

IEEE/ACM Transactions on Networking 3, 3 (June 1995), 226–244.

[14] Rabin, M. O. Efficient dispersal of information for security, load balancing, and

fault tolerance. Journal of the ACM 36, 2 (Apr. 1989), 335–348.

[15] Rubino, G., and Sericola, B. Interval availability distribution computation.

IEEE Transactions on Computers (1993), 48–55.

[16] Sericola, B. Interval-availability distribution of 2-state systems with exponential

failures and phase-type repairs. IEEE Transactions on Reliability 43, 2 (June 1994),

335–343.

[17] World Wide Web Consortium. Hypertext transfer protocol – HTTP/1.1. RFC

2616. Available online at http://www.w3.org/Protocols/rfc2616/rfc2616.txt.

20

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

	Introduction
	Previous work
	The Algorithm
	Model of Web Server connections
	Numerical Results
	Conclusions and future work

